Geometric graphs appear in many real-world data sets, such as road networks, sensor networks, and molecules. We investigate the notion of distance between embedded graphs and present a metric to measure the distance between two geometric graphs via merge trees. In order to preserve as much useful information as possible from the original data, we introduce a way of rotating the sublevel set to obtain the merge trees via the idea of the directional transform. We represent the merge trees using a surjective multi-labeling scheme and then compute the distance between two representative matrices. We show some theoretically desirable qualities and present two methods of computation - approximation via sampling and exact distance using a kinetic data structure, both in polynomial time. We illustrate its utility by implementing it on two data sets.